A Comprehensive Characterization of Spark Ignited Exhaust Emissions during Transient Load Cycles

Dylan Lehmier, Dr. Casey Allen

Marquette University
Department of Mechanical Engineering
Objective and Motivation

Objective: To characterize the transient response of individual hydrocarbon species and explore prediction accuracy based on steady-state maps.

Emissions Inventories
Quasi-steady maps could be used for real-time estimation of exhaust species for use in emissions inventories.

Catalyst Development
Prediction of exhaust species to evaluate catalyst performance during standard drive cycles. Catalyst efficiency depends on species.

Emissions Control
Engine controller action may consider relative emissions of unique unburned hydrocarbons – such a controller requires an appropriate cost function that considers individual species.
SPECIATE: EPA’s database containing speciated profiles of volatile organic compounds (VOCs) and particulate matter.

Speciate was developed for:
1. Air quality modeling
2. **Estimate hazardous and toxic air pollutant emissions**
3. Provide input to chemical mass balance receptor models
4. Verify profiles derived from ambient measurements using multivariate receptor models
Background

Literature:
- Transient response analysis largely based on *unburned hydrocarbons* as a class. (Karjalainen et al., Iodice et al.)
- Prediction strategies generally include “fudge factor” applied to a steady state map. (Gao et al., Ericson et al.)

Gao et al. (2010): Modeled the transient, in-cylinder temperature which was used to adjust quasi-steady map predictions.

Ericson et al. (2005): Modeled the departure of AFR from quasi-steady conditions during transient events and used as correction basis.

\[
\dot{m}_{i,\text{corr}} = \dot{m}_{i,\text{QS}} \frac{EI_i(\lambda_{\text{dyn}})}{EI_i(\lambda_{\text{QS}})}
\]
Unburned Hydrocarbon Profile

How does the unburned hydrocarbon profile change with the speed/load condition?

- Emissions profile varies with respect to engine speed and load
- Each species has its own reliance on engine operation

Not all hydrocarbons respond equally
Using different frequency transient loads to examine transient emission response.

2 profiles with varying period lengths were examined.

BMEP = 0.8-3.44 bar
Experimental Method

Developed model based on engine operating points at steady state

Steady State:
- Engine speed and load
- Exhaust and coolant temperature
- Oil pressure
- FTIR inlet temperature
- Emission rates
High Frequency Transient Load Results

Nitric Oxide (NO)
- Estimate follows pattern
- Estimation error at minima and maxima

Acetylene
- Estimate follows pattern
- High estimation error at low load conditions
- Combustion Intermediate
- Inversely proportional to load
High Frequency Transient Load Results

Ethylene
- Limited transient response
- Increase in concentration over time
- Possibly affected by history in engine
- More rapid oscillations
- Intermediate
- Follows cyclic pattern
- Gasoline component
Low Frequency Transient Load Results

Nitric Oxide (NO)
• Follows pattern proportional to load
• Estimation error reduced

Acetylene
• Follows pattern corresponding to inverse proportionality to load
• Estimation error reduced
Low Frequency Transient Load Results

Ethylene
- Transient response increases
- Begins to follow pattern with respect to load profile

Ethanol
- Delay in response
- Rapid oscillations from high frequency transient diminished
- Follows cyclic pattern with respect to load profile
Conclusions

- Transient emissions of certain species can be predicted using steady state maps at low frequencies (NO and acetylene at 10 second period)
- No species can be accurately estimated by using steady state maps during high frequency transient load conditions (5 second period)
- Hydrocarbons do not act as a class. Each individual species exhibits a unique transient response.

Future Work

- Characterize larger set of unburned hydrocarbons and identify their unique cutoff frequencies where steady state map prediction can be implemented.
- Identify a transient modeling strategy to estimate emissions where steady state maps are inaccurate.